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N. ARAVAst and R. M. McMEEKINGt
Department of Theoretical and Applied Mechanics. University of Illinois at Urbana-Champaign,

Urbana, IL 61801, U.S.A.

(Received 17 December 1984; in revised form 8 October 1985)

Abstrac:t-A solution is presented for the elastic stress intensity factors at the tips of a slightly kinked.
partially closed crack in compression. The solution is accurate to first order in the deviation of the
crack surface from a straight line and is carried out using perturbation procedures analogous to those
of Banichuk (Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 7,130 (1970)), Goldstein and Salganik (Int. J.
Fracture 10, 507 (1974)) and Cotterell and Rice (Int. J. Fracture 16, 155 (1980)) for the problem of an
open crack. Comparison with the exact solution indicates that the asymptotic solution is accurate for
values of the angle between the straight crack and its out-of-planc kinks up to about 20u

•

I. INTRODUCTION

Experiments on glass plates containing pre-existing planar through cracks oriented at an
angle to the direction of the axial compression have revealed that the relative sliding of the
faces of the pre-existing cracks does not result in co-planar crack growth, but rather
produces at the tips of the pre-existing cracks small tension cracks which deviate at sharp
angles from the sliding plane[l-4]. These experiments are designed to be models for the
propagation of cracks in rocks in compression. In this paper, we are concerned with the
calculation of stress intensity factors at the tips of the kinked open extensions of a closed
sliding through crack. The same method can be extended to a curved crack with several
closed sections. The solution obtained is accurate to first order in the deviation of the crack
surface from a straight line drawn between the kink tips and is carried out using perturbation
procedures similar to those used in Refs [5-9] for the problem of the open crack. The results
can be stated in terms of known solutions for a single straight crack or a co-linear array of
straight cracks.

A complete solution to the problem of the sliding kinked crack has been given by
Nemat-Nasser and Horii[3], who used a continuous distribution of dislocations to model
the crack and its kinks. In order to find the stress intensity factors, they solved numerically a
singular integral equation for the dislocation distribution. In contrast, we can avoid the
solution of the singular integral equation by using the results of the asymptotic analysis for
the stress intensity factors. However, the validity of the asymptotic solution is limited to
small deviations of the crack surface from a straight line. Comparisons with the exact
solution given in Ref. [3] indicate that the first-order solution for the mode I stress intensity
factor is accurate for values ofthe angle between the straight crack and its out-of-plane kinks
up to about 20°.

2. GENERAL FORMULATION OF THE PROBLEM

2.1. Formulation of the boundary value problem
Consider an infinite plate of a homogeneous, isotropic, linearly elastic, brittle solid

containing a curved crack on y = A(X), with its tips at positions x = ±a (Fig. 1). A uniform
state of stress O'~, O'~ and O'~ is applied at infinity, with O'~ < 0 and 0': < 0, where tension is
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Fig.!. Infinite plate containing a curved crack.

1- 0
"
..

regarded as positive. The corresponding two-dimensional boundary value problem is given
by

aji,j = 0

2eij = Ui,j +Uj,i

aij = Cijklekl

at infinity

on the open portions of the crack

}

on the sliding portions

of the crack

(1)

(2)

(3)

(4)

where a ij , eij and u i are the stress, strain and displacement fields in the region V occupied by
the body, C ijkl is the fourth-order tensor of the elastic moduli, ann and artS are the normal and
shear tractions at the crack surface, Un is the displacement in the direction normal to the
crack surface, Jl is the coefficient offriction, A,i is oA/oxl and the superscripts plus and minus
denote the value of the indicated quantity on the upper and lower surfaces of the crack. Note
that the open and sliding portions of the crack are, in general, not known in advance and
their determination becomes part of the solution.

2,2. Small-parameter expansion
The essence of the approximation we use is that the solution to the problem with the
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curved crack is close, in some sense, to the solution of a similar problem for a straight crack.
In fact, we shall use the solution to the following problem, involving a flat crack, as the
leading or zero-order approximation in our expansion. Let 0'(0), £(0) and UfO) be such that

and

O'(.f?). = 0
)10)

2C!~1 = U(O) + U(.O}
I) f,) J.I

(01_ C (0)
U ij - ijk,Ek'

u~f?) = a'!'!
I) I)

u(O)(x 0) = lJO'(O)(x 0)
"" r",

u;(x,O) = u;(x,O)

at infinity

on the open portions of the crack

}

on the sliding portions

of the crack

(5)

(6)

(7)

(H)

where V' is the plane with a straight slit lying on the x-axis from - a to a. If the slope of the
actual crack, A'(X), has order of magnitude E ~ 1 at its largest, then we can seek a
perturbation expansion in £ for the solution to the problem of the curved crack, such that

(9)

(10)

(11)

where O'U), £U) and uU ) are all 0(£) compared to the leading order terms. We mention that
A'(X) = OlE) also means that A(x)/a = 0(£), because A( ±a) = O. What remains now is the
finding of the equations and the boundary conditions governing O'U), £U) and UUI. We note at
this stage that our approach is identical to that of Cotterell and Rice[7], except that they
addressed the problem of a crack open everywhere. Furthermore, they found their solutions
and expressed their expansions in terms of Muskhelishvili's[10] complex potentials. We
prefer to work in terms of fundamental quantities, although it is entirely possible that the
partially closed, slightly curved crack can also be solved by a variation of the complex
variable treatment of Cotterell and Rice[7].

We return now to the question of finding O'U), £U) and UU). In order to find the equations
and boundary conditions governing O'U), £U) and u(l), we substitute the expansions (9Hll)
into eqns (1)-(4). We also use the fact that both A(X) and A'(X) are 0(£) to write expansions in £

for the tractions and displacements on the crack surface y = A(X). Using a tensorial
transformation, we find that the normal and shear tractions on the actual crack can be
written as

u",,(x, A) = ,[U",,(X,A)+Uyy(X,A)]

+i[0'yy(x, A) - u"Ax, A)] cos 20 - 0'",(x, A) sin 20

where 0 = A.'(x) +0(£3). Then, using a Maclaurin series expansion in 0 for sin 20 and cos 20,
we find

O'",,(x, A) = 0',,.{x, A) - 2A.'(x)O'",(x, A) +0(£2)

O'".(x, A) = 0'",(x, A) + A/(X) [uyy(x, A) - 0'",,(x, A)] +0(£2).
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If we now write Maclaurin series expansions in y for (Jxx' (Jyy and (JXl" the last two equations
become

oaxAx, 0) , [ ] 2
an.(x, A) = (Jx,,(X,O)-A(X) OX +A.(x) a",,(x,O)-an(x,O) +0(6)

(12)

(13)

where we have also used the equilibrium equations oax,loy = -oan/ox and oa",Ioy =
-oax,,/ox.

In a similar way we can show that

Un(X, A.) = uix, 0) +A(X)6yy(X, 0) - A.' (x)ux(x ,0) +0(62
).

Using the expansions (9)-( 11), eqns (l2)-( 14) can be written as

_
( 0) (1) _ oa~~(x, 0) (0) 2

ann(X , A) - a"" (x, 0) +0'"" (x,O) A(X) Ox 2A'(x)ax,,(x,0)+0(6)

( ') - (0)( 0) (1)( 0) '() oa~Oj(x,0) "()[ (0)( 0) (0)( 0)] O( 2)an. X, A - a"" x, +0'"" X, -A X OX +A X ayy X, -an X, + 6

(14)

(15)

(16)

(17)

Finally, substituting eqns (9)-(11) and (15) and (16) into the boundary value problem
formulated in Section 3.1 (eqns (1)-(4)), taking into account (5)-(8) and separating zero- and
first-order terms, we find that ".(1), £(1) and u(1) should be the solution to the following
boundary value problem

with

al!l =0
I) at infinity

on the open portions of the crack

(18)

(19)

(20)

for Ixi < a (21)

U~1)(X,O+)-U~l)(X,O-) =

- A(x)[e~~)(x, 0 +) -e~~)(x,0-)] +A'(X)[u~O)(x, 0 +) - u~O)(x, 0-)]

on the closed sliding portion of the crack.

(22)

3. FORMULAE FOR THE STRESS INTENSITY FACTORS

Following Cotterell and Rice[7] , let OJ be the angle of the crack tip at X = a, given by
OJ = A'(a) to first order. The normal (aww) and shear (a,w) stresses acting along the
prolongation of the crack at a small distance r from the tip at x = a are obtained by setting
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A. = wr+O(c,l) = w(x-a)+O(c,l) into cqns (15) and (16). So

- (0)( 0) ( ) aCT~~(X, 0) [(0)( 0) (0)( 0)] (11( 0) O( 2CT'w - CT"" x, -w x-a ax +w CT"" X, -CT"" X, +CT"" x, + /;).

1283

In general, partially.closed crack problems are contact problems and part of the
solution is the finding of the closed portions of the crack; the solution depends on crack
surface conditions and is often obtained by iteration. For the rest of the paper, we assume
that the crack tip is open, so that the stress field has square·root singularities at x = ±a. This
is also known to be true if the crack faces are in frictionless contact (Comninou[15, 16],
Comninou and Schmueser[17]). Then, the stress intensity factors can be calculated as

K1 = lim, (j(2nr)CTww) = KIO)+KI~+KI1)+O(/;2)
,"'0

K = lim (j(2nr)CT ) = K(OI+K(1) +K(1)+O(/;2)II 'w II II.... II
r-O·

(23)

(24)

where Klo>, KI?>, KjI> and KIP are the stress intensity factors for the zero· (eqns (5)-(8)) and
first·order (eqns (l8)-(22)) problems, and

Using the last two equations and a Williams[ 11] expansion for the near crack tip stress
field, we can show that

(25)

and

(26)

From the formulation of the first·order problem (eqns (18)-(22)), it is clear that this can
be considered as the superposition of the following two problems; problem (i) with a
prescribed normal displacement and zero shear traction on the sliding portions of the crack
and with the rest ofthe crack traction free, and problem (ii) with a prescribed shear traction
and zero normal traction everywhere on the crack face. Assuming that the sliding and open
portions of the crack are known and using the solution of the zero·order problem, we can
determine KIll from the solution of problem (i) mentioned,above.

As far as KIP is concerned, it is obvious that only the prescribed shear tractions at the
crack surface of problem (ii) mentioned above that have opposite directions on the upper
and lower surfaces of the crack have a non·zero contribution to KIP. With the definition

KIP is known (e.g. Ref. [12]) to be

1 fa J(a+x)KIP = --- uW(x) -- dx
j(na) -a a-x

(27)
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where, according to (21)
d

c1~~.l(X) = J(c1~~I(X) + I,(X)~ [c1~~(X) - Jlc1~~,I(X)]
dx

- I:(X)[( I + 2Ji2)a~~)(x) - a~~(x)]. (28)

On the other hand, it is possible that the stress field of the zero-order problem, a(O), has the
characteristic 1/J r elastic singularity at several points in the interval Ixl ~ a; since
derivatives of a(O) with respect to x arc involved in the formula for ii~l/ (eqn (28)), non
integrable singularities will appear in eqn (27). To overcome this difficulty, we assume, for
the moment, that the stress components aI7)(x, 0) are all bounded and differentiable with
respect to x in the intervallxl ~ a; this makes O'~~(X,0) also bounded on the crack face. In the
case where O'l7)(x, 0) are singular at some point in the intervallxl ~ a, the singularities are
removed by replacing O'l7l(x, 0) by bounded functions that reduce continuously to zero (or
any other value that makes O'I7)(x, 0) continuous) over distances closer than a small distance
c5 to the point where the singularities appear. Later it is shown that it is possible to let c5 tend
to zero, i.e. effectively to remove the restriction of bounded and differentiable al7)(x,0).

We return now to the calculation of KlI). With the above continuity assumptions on 0'\7)
we can integrate by parts eqn (28) to find

1 fa
KlI) = -J() {JiaW-).'[(1+2Ji2)a~~)-a~~J

na -a

+ [- A' +l).'(a)J(aIO) - Jia(O)} J(a +x) dx
2 xx XY a-x

__JI fa (a~~-Jia~~)[!A.'(a)- a),+t-~~A'(a) JJ(a-x)dX. (29)
(na) -a a-x a+x

It should be noted that aA(x)+(a-x)A'(a) = (d/dx) [aA(x) + (a-x)A'(a)J = 0 at x = a,
so there is no divergence at the upper limit of the second integral in (29). It can also be seen
that an integrable singularity can exist in aI7)(x), provided it is not at x = ±a, as was also
noted in Ref. [7J. Specifically, in terms of our earlier discussion, c5 can be shrunk to zero and
in that limit, the result of eqn (29) for KIf) approaches the result obtained by inserting
directly into eqn (29) the singular, actual a~7)(x). Such considerations, based essentially on
the fact that the final result of eqn (29) for Kll) contains a~7)(x) only (and not derivatives with
respect to x), allow us to conclude that eqn (29) is valid for all integrable a~7)(x) (i.e. not
necessarily bounded or continuous).

We mention again that part of the solution to our problem is the finding of the closed
portions of the crack and this is often obtained by iteration. Assuming that the contact
regions are known and having solved the zero-order problem, we can proceed to solve the
first-order problem and use the formulae given in this section to find first-order corrections
to the stress intensity factors. In some cases (see Section 4) physical reasoning can be used to
determine the contact regions; however, this is not always possible and one must always
check whether the obtained solution is consistent with the assumed contact regions.

4. THE PROJilLEM OF THE KINKED CRACK

A particular case of the curved crack is the kinked crack shown in Fig. 2. The shape of
the kinked crack is given by

mb
-b-(x+a)

-a
for -a ~ x ~ -b

for Ixl ~ b

for b ~ x ~ a.

),,(x) = mx

mb
--(x-a)
b-a

In this case, W = ).'(a)+O(t:3
) = mb/(b-a)+O(t:3

).
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Fig. 2. Infinite plate containing a kinked crack.
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Following our previous discussion, we assume that both m and mb/(b-a) are Ole),
which is equivalent to assuming that ;"(x) is O(e). We mention again that we are concerned
with the case where both C1;", and C1~ are negative and so, we assume that the portion of the
crack in the interval Ixl ~ b remains closed during the application of the load. Thus, the
sliding portion of the crack is the interval Ixl ~ b and the open portions are the intervals
b ~ Ixl ~ a. Physically, this is a reasonable assumption to make and it simplifies the whole
iterative process of finding the contact regions and their sizes. As mentioned in the previous
section, in this paper we are only concerned with the case in which the crack tip remains open
and formulae (23)-(26) are applicable. However, there is a possibility that the applied
stresses C1'tj and the orientation of the kinked crack are such that the whole crack remains
closed and does not slide. So, after solving the problem assuming that the crack opens in the
intervals b ~ Ixl ~ a, we must check the validity of this assumption. A necessary condition
for this assumption to be true is that K I at the tips ofthe kinks is positive; if the calculated K I

is negative, the tips of the kinks remain closed and the assumption that the crack opens in the
intervals b ~ Ixl ~ a is in error.

4.1. Solution of the zero-order problem
The zero-order problem can be considered as the superposition of the four problems

shown in Fig. 3, where F(x) is the distribution of the C1~~)(x,0) stress component ofproblem 1.
We note that for problem 4 the shear stress on the crack face, qlx~(x, 0) =JlF(x) , opposes the
relative sliding of the crack faces. The quantities of interest for each of the four problems
mentioned above are given in the following. In the solutions presented in the rest of this
section, conditions of plane strain are assumed; in order to get the plane stress solutions we
simply replace v by v/(l + v).
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Fig. 3. Superposition used in the solution of the zero-order problem.

4.1.1. Problem 1. The solution to this problem has been given by Erdogan[13J and is as
follows

(30)

a(O)(x 0) = F(x) - a OO
xx I yy

a(O)(x 0) = 0xy I

elO)(x 0+) = eIO)(x 0-)
yy' yy I for Ixl < b;

and

alOI(x 0) = - a OO
xx' yy for b < Ixl < a

where K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively, and k = J(1-b2 ja2).

Also, the stress intensity factors for this problem are

K (0) = a;;J(7ta) [1- E(k)]
I k K(k)



and
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Problem 2 consists of a plane strain tension. The solution to this problem is quite
obvious; therefore we proceed to problem 3.

4.1.2. Problem 3. The solution to this problem is known (e.g. [12]) to be

(0)( 01 ) _ _ '" 2x(1;u x, - +(1", J 2 2
(a -x )

(1'" X
e(O)(x 01 ) = +v...E.--..,----
JIY' -GJ22(a -x )

and

for Ixl < a

where G is the shear modulus of the material.
In addition

and

K(O) - "'J( )II - (1", 1ca.

4.1.3. Problem 4. The solution to this problem is derived in Appendix 1and is as follows

(0) ± _ '" 2x
(1",,(x,O ) - ±jl(1yy J(a2-x2)

(1~~)(x, 0) =0

for Ixl < b;

and

(1~~(x,O±) = +2jl(1;;{J((x2_b;)(a2_x2»[x2-ai_~~-~G--J'(a-=-2-~-x-=-2)}
for b < Ixl < a.

Also

K(O) = jlO';;.J(1ta) [1-k _ E(k)]
It k K(k) .



1288 N. ARAVAS AND R. M. McMEEKING

4.1.4. Superposition. Superimposing the solutions of the four problems shown in Fig. 3.
we find the quantities of interest of the solution to the zero-order problem to be

u~~.l = F(x)

for Ixl < b; and

for b < Ixl < a.
Also, the stress intensity factors for the zero-order problem are given by

K(OI = q;)(7ta) [1- E(k)]
I k K(k)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

4.2. Stress intensity factors for the first-order problem
As discussed in Section 3, the first-order problem can be considered to be the

superposition of the two problems shown in Fig. 4.
The mode I stress intensity factor Kjl) is determined by solving problem I in Fig. 4,

which is actually the problem of the opening of a finite crack by a rigid wedge. The general
solution to this problem has been given by Markuzon[14J. Taking into account eqn (22) and
the solution of the zero-order problem derived in the previous section, we find that, for our
particular case, the shape of the wedge, h(x), is given by

Ixl ~ b. (40)

y

-- -4'" x +
-a -b b a

(2)

y

1......................................__ -= J X
~ + +.

Fig. 4. Superposition used in the solution of the first-order problem.
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Using the above formula for the shape of the wedge and Markuzon 's[14J solution, we find
the mode I stress intensity factor to be (see Appendix 2)

(41)

where

We proceed now to the calculation of the mode II stress intensity factor for the first
order problem, Kif', which can be determined either by solving problem 2 in Fig. 4, or
equivalently, using eqn (29). We note that q~~(x),q;~'(x)and q~~(x)all have the characteristic
I/Jr singularity at x = ±b; but as discussed in Section 3, eqn (29) for Kit) can still be used,
provided that the singularities are integrable, which is indeed the case. So, using the solution
of the zero-order problem derived in the previous section and applying eqn (29), after some
lengthy, but straightforward, integrations we find

(42)

where Kj!) is given in eqn (40).

5. DISCUSSION AND COMPARISON WITH THE EXACT SOLUTION

The obtained asymptotic solution for the stress intensity factors at the tips of a kinked
crack is of the form

where KIO), Kl?), Kj!' and KIP are given in eqns (38), (39), (41) and (42), respectively.
Equations (41) and (42) show that KP' and Kit' depend on Poisson's ratio. This is not
surprising since displacement boundary conditions have been used along the closed portion
of the crack. However, numerical calculations ofKj!) and KIP show that their dependence on
v is very weak and that their values for plane strain and plane stress are practically
indistinguishable. On the oth~r hand, since the zero-order problem is a traction boundary
value problem with zero body forces, the leading terms, Klo, and Kl?', are the same under
plane strain or plane stress conditions and independent of the elastic constants.

Next, we apply our results to the problem of an infinite plate containing a kinked crack
oriented at 36° to the overall compression (Fig. 5). The exact solution, given in Ref. [3], and
the asymptotic results for K. are plotted in Fig. 6 vs the angle between the straight crack and
its out-of-plane kinks, 0, for several values ofthe ratio ofthe length ofthe kink,l, to the length
ofthe straight crack, e. In general, the region ofaccuracy of the asymptotic solution depends
on both lie and 0, because the values ofm and w in our analysis, which must be small for the
asymptotic solution to be valid, depend on both Ilc and O. But, roughly speaking, the
asymptotic solution is seen to be accurate for values of 0up to about 200

• Unfortunately, the

SAS 22: 11- I
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Fig. 5. Infinite plate containing a kinked crack oriented at 36" to the overall compression.
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Fig. 6. Stress intensity factor at the tips of the kinked crack shown in Fig. 5 (p = 0.3).

values of K II for small values of () are not given in Ref. [3]; so, comparisons of the asymptotic
result for K II with the exact solution were not possible.

We mention also that the sign of K. depends on the orientation of the main crack to the
loading direction as well as on I, C, and O. For some of the cases shown in Fig. 6, K. is
negative. This means that the assumption that the crack opens in the intervals b :s;; Ixl :s;; a is
no longer valid. The correct solution to the problem can be obtained by iteration, i.e. one has
to repeat the analysis taking into account the contact zones near the crack tips. This
comment concerns both the exact and the asymptotic solution, and poses a challenging
problem. The solution to this problem is left for future investigation.

6. CLOSURE

A first-order solution bas been obtained for the stress intensity factors at the tips of the
kinked extension of a sliding crack. The validity of the asymptotic solution is limited to
kinked cracks with small deviations from straightness. There are several situations where
this deviation is indeed small. As an example, consider the case ofglass plate or a rock block
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containing several small cracks at different orientations. Under the application of a
compressive load, the cracks with an angle to the direction of compression, y, greater than
Yc = tan -1 (l/j.L) will remain closed and only those with y < Yc can, possibly, slide and
propagate. It is also known[l-4] that these cracks tend to propagate towards the
direction of compression. So, if the coefficient of friction, j.L, is very high (which makes Yc
small) the crack propagation will create kinked cracks with small deviations from
straightness. For situations like these, the asymptotic results can be used to determine the stress
intensity factors and to make predictions for the direction of further propagation. In
addition, fatigue due to non-proportional loads can cause the development ofcracks that are
not straight and are partially closed, although open at the tip. For cases where the deviation
from the straight line is small, the methods devised here can be used, although a criterion for
determining where the closed portions lie would have to be developed.
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APPENDIX I

Problem 4 in Fig. 3 is formulated in terms of the complex potentials t/J and y, of Muskhelishvili[ 10). The stresses
and displacements can be expressed as

ITxx +IT" = 2[t/J'(z) + t/J'(z)]

IT,.-IT.. +2iu., = 2[Zt/J"(z)+y,'(z)]

2G(ux +iu,) = "t/J(z)-zt/J'(z)-y,(z)

(43)

(44)

(45)

where" = 3-4v for plane strain and" = (3 - v)/( 1+ ,.) for plane stress, the overbar denotes the complex conjugate
and prime stands for differentiation with respect to z = x + iy.

Introducing the analytic function

O(z) = zt/J'(z)+y,(z)

eqns (43H45) can be written as

(46)
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For a prescribed shear traction a.,(x, 0) along the crack face, it is known (e.g. Ref. [12]) that

(47)

(48)

(49)

In our problem

for Ixl < b

for b < Ixl < 0
(SO)

where F(x) is defined in eqn (30). Substituting eqn (49) into eqn (SO) and carrying out the integration we find

I/I'(z) = n'(z) = -~ pu;;{[ZZ -oz ~~~iJ J((ZZ-O~)(ZZ_bz)) J(ZZZ_OlJ

Finally, using eqns (46H48) and the definition

K1+iKu = lim J(211(x-a))[u,,(x,O)+iu.,(x,O)]
x-.·

we find the results shown in Section 4.1.3.

APPENDIX 2

(51)

(52)

The solution to the problem of the opening ofa finite crack by a rigid wedge has been given by Markuzon[14].
In terms of Muskhelishvili's[10] complex potentials, the solution is shown to be

2G 1 f- dh dx CoI/I'(z)=n'(z)=--- -X(x)-+-
11(/(+ 1) X(z) _bdx x-z X(z)

where h(x) is the function determining the shape of the wedge of length 2b (see Fig. 4), X(z)=J((02_ Z2)(b2_Zl»)
and the constant Co is determined from the equation

~ r 1 ri dhJ((02_/2)(b2_tl»~JdX_K+1K(k)Co=_h(b).
11 Jb J((02-x2)(xl-b2)>lJ-bdl I-X 2G 0

As discussed in Section 4.2, the shape of the wedge for our problem is given by

Ixl < b.
0'" -po'" (1-V)a2_ X Z

h(x) = m X1" ,
G J(02_ X2)

Substituting eqn (53) into eqn (52) and carrying out the integrations, we find

where

c = _1_ {-K(k)k 3+ [(1 +2v)K(k)-2E(k)]k+2v
K(k) 2k

r xJ(x2-b2
) -OJ(02 _b2) dx }

+v Jb oZ_xl J«02_X2)(xl-b2)) .

Finally, using cqns (46), (47) and (51) we find the stress intensity factor to be

'" '" J m k3 -(2-v)k2+(1 2v+2C)k+v
K1= -(ux,-pu,,) (110)- 2

I-v 2k

(53)


